SYNTHETIC STUDIES ON MITOMYCINS. 2.¹ A SYNTHESIS OF 9a-HYDROXY-5,8-DIDEOXOMITOSANE SKELETON THROUGH A NOVEL RETROALDOL TYPE OF RING-OPENING REACTION.

Takeshi Ohnuma, Yasuo Sekine and Yoshio Ban Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

Summary: A synthesis of 9a-hydroxy-5,8-dideoxomitosanes was accomplished by the transannular cyclization of hydro-1-benzazocinone intermediates derived from 3-(2,5-dioxo-1-methylcyclopentyl)-6-methyl-p-phenylenediamine derivatives. These mitosanes were led to the 8-membered ring system by an oxidative ring-opening reaction.

In the preceding communication¹ has been described a new regiospecific Michael addition reaction, affording the compounds (2a and 2b), which are claimed by us to be the important precursors for a synthesis of mitomycins (1). We wish to report in the present communication a new biomimetic route to the synthesis of 9a-hydroxy-5,8-dideoxomitosane (3a, b) from 2a and 2b through fewer steps, which include a novel retroaldol type of ring-opening reaction, followed by a transannular cyclization.

No. 27

Removal of the carbobenzoxy group from the diketone (2a, $Z = CO_2CH_2Ph$) was made by hydrogenolysis with 10% Pd-C in triethylamine-aq. THF in an atmospheric pressure of hydrogen to afford the corresponding aminoketone (2a, Z = H), which was treated with sodium hydride in dry THF at a room temperature, yielding an epimeric mixture of 9a-hydroxy-5,8-dideoxomitosanes 3a[IR v(Nujol) 1670 cm⁻¹; NMR δ (DMSO-d₆) 0.93(d, 1.5, J = 7 Hz), 1.14(d, 1.5, J = 7 Hz), 1.91(s, 1.5), 1.96(s, 1.5) and 2.37(s, 3) ppm; MS 386(M⁺) and 368(M⁺- H₂O): 95% yield from 2a]. In a similar manner, 2b gave 3b[IR v(Nujol) 1675 cm⁻¹; NMR δ (acetone-d₆) 1.16 (d, 1.5, J = 7 Hz), 1.38(d, 1.5, J = 7 Hz), 2.39(s, 3) and 2.80(s, 6) ppm; MS 339(M⁺) and 321(M⁺- H₂O): 86% yield from 2b]. The acid-sensitive 3a and 3b were converted quantitatively to 5,8-dideoxomitosenes 4a(mp 221-4°) and 4b(mp 199-201°)² through dehydration reaction in glacial acetic acid at a room temperature for 5 min, respectively.

Reduction of the lactam group in <u>3a</u> was carried out with phosphorous pentasulfide in THF at reflux, followed by desulfurization with Raney Ni in EtOH-THF at reflux, to afford pyrrolo[1,2-<u>a</u>]indole <u>5</u> (mp 217-20°)² which was subjected to detosylation reaction with sodium in liquid ammonia, providing the known pyrrolo $[1,2-\underline{a}]$ indole[<u>6</u>, mp 95-7°(lit.³ mp 94-5°); IR v(KBr) 3300 and 3220 cm⁻¹; NMR δ (CDCl₃) 2.17(s, 3), 2.29(s, 3), 2.36-2.65(m, 2), 2.85(t, 2, <u>J</u> = 7Hz), 3.93(t, 2, <u>J</u> = 7 Hz), 6.78(s, 1) and 6.90(s, 1) ppm: 64% overall yield from <u>3a</u>].

Oxidation of <u>3b</u> with 1.5 eq. of lead tetraacetate in triethylamine-methanol at a room temperature and the subsequent treatment with aq. ethylene glycol afforded the unstable 8-membered compound [$\underline{7}$, mp 103-4°; IR v(CHCl₃) 3280, 1705, 1620 and 1560 cm⁻¹; NMR δ (CDCl₃) 1.26(d, 3, $\underline{J} = 7$ Hz), 2.02(d, 3, $\underline{J} = 1.5$ Hz), 2.89(s, 6), 3.04(s, 3), 7.06(q, 1, $\underline{J} = 1.5$ Hz) and 7.20(d, 1, $\underline{J} = 2$ Hz) ppm; MS 369(M⁺): 37% yield], monomethoxymitosanes[<u>8a</u>, mp 183-5°; IR v(Nujol) 3360, 3270, 1690 and 1618 cm⁻¹; NMR δ (CDCl₃) 1.39(s, 3), 2.34(s, 3), 2.87(s, 6), 3.36(s, 3), 3.40(s, 1), 6.00(broad s, 1) and 7.41(s, 2) ppm; MS 369(M⁺): 9% yield], and [<u>8b</u>, mp 172-3°; IR v(Nujol) 3320, 3180, 1670 and 1610 cm⁻¹; NMR δ (CDCl₃) 1.59(s, 3), 2.08(s, 1), 2.34(s, 3), 2.85(s, 6), 3.25(s, 3), 5,98(broad s, 1), 7.39(s, 1) and 7.43 ppm; MS 369(M⁺): 12% yield] as two isomers. The same products(<u>8a</u>, <u>b</u>) were also obtained by oxidation of <u>4b</u> with a catalytic amount of osmium tetroxide-Nmethylmorpholine-N-oxide⁴ in aq. acetone-tert. butanol at a room temperature, followed by treatment with 10% hydrochloric acid-methanol in 70% overall yield from 4b.

Further studies are in progress to accomplish the synthesis of mitomycins and the related compounds.

Acknowledgement: The work was financially supported by Grants-in-Aid for Scientific Research-A(No. 243026) and for Special Project Research(Nos. 311701 and 311702) from the Ministry of Education, Science and Culture, and by an award from the Mitsubishi Foundation, which are gratefully acknowledged.

REFERENCES AND NOTES

- 1. T. Ohnuma, Y. Sekine, and Y. Ban, Tetrahedron Letters, (1979).
- Satisfactory elemental analyses and spectroscopic data were obtained for these substances.
- 3. T. Takada and M. Akiba, <u>Chem. Pharm. Bull</u>. (Japan), <u>20</u>, 1785 (1972). These spectral data of <u>6</u> were identical with those reported in the literature. We are grateful to Dr. T. Takada, Tokyo College of Pharmacy, for kindly sending us the nmr spectral chart of compound <u>6</u>.
- 4. V. VanRheenen, R. C. Kelly, and D. Y. Cha, Tetrahedron Letters, 1973 (1976)

(Received in Japan 31 March 1979)